Monoufya University
Faculty of Engineering
Department of Basic Eng. Sciences
Second Semester Exam 2020
Date of Exam: 19/08/2020

Field: Basic Eng. sciences.

Code: BES 615

Subject: Eng. Mathematics.

Time allowed: 3 hrs. Total marks: 100 marks

Answer all the following questions:

[100 marks]

- 1.1 Deduce a first order, first degree, homogeneous partial differential equation which has the general solution $u(x, y) = x^2 f(x-y)$.
- 1.2 Classify, solve, and check the equation $u_{xx} + u_x = 2(2x^3 y^2)$.

[20 marks]

- 2.1 Deduce the general solution of the equation $(mz ny)z_x + (nx lz)z_y = ly mx$
- 2.2 Classify, solve, and check the equation $e^{y}z_{x} e^{x}z_{y} = 0$

[20 marks]

- 3.1 Classify, solve, and check the equation $z_{xx} 2z_{xy} + z_{yy} = 12xy$.
- 3.2 Solve and check the equation $(D_x D_y 1)(D_x D_y 2)z = e^{2x-y}$

[20 marks]

- 4.1 A flexible string is fixed at two end points π apart and is stretched. The motion of the string takes place by displacing the string in the form $y=\sin x$ from which is released at time t=0. If the initial transverse velocity of any point of the string is $y_t(x,0)=0$, determine the unsteady displacement of any point at a distance x from one end at time t.
- 4.2 A force $F = f_r u_r + f_\theta u_\theta + f_z u_z$ is applied to translate a rigid body of mass m on a cylindrical surface. Deduce Lagrange's equations of motion of the body where: f_r , f_θ , f_z are the force components in r, θ , and z directions. Letting $q_1 = r$, $q_2 = \theta$, $q_3 = z$ be the generalized coordinates and $Q_1 = f_r$, $Q_2 = rf_\theta$, $Q_1 = f_z$ be the generalized forces. Lagrange's function is $L = 0.5 m(\dot{r}^2 + r^2 \dot{\theta}^2 + \dot{z}^2) mgz$. Discuss the derived equation of motion. [20 marks]
- 5.1 Solve the steady state heat equation $\nabla^2 u = -4$ in the annular region 1 < r < 2 with the boundary conditions: $u(1, \theta) = 0$, $u(2, \theta) = 1$. Calculate the heat flux from the outer boundary.
- 5.2 Determine the surface passing through the two lines: $L_1:\{x=0, z=0\}$, and $\{x-y=0, z-1=0\}$ satisfying the differential equation $z_{xx}-4z_{xy}+4z_{yy}=0$. Classify the equation and its solution, then check your solution. [20 marks]

This exam contributes " by measuring in achieving Program Academic Standards according to NARS			
Question Number	Q1, Q2, Q3	Q1, Q2, Q3,Q5.2	Q3, Q4, Q5.1
	Knowledge & Understanding Skills	Intellectual Skills	Professional Skills

With my best wishes Dr. Bilal Maher